
Copyedited by: MANUSCRIPT CATEGORY: Regular Manuscript

[18:56 23/1/2019 Sysbio-OP-SYSB180061.tex] Page: 281 281–297

Syst. Biol. 68(2):281–297, 2019
© The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syy061
Advance Access publication September 21, 2018

Long-Branch Attraction in Species Tree Estimation: Inconsistency of Partitioned Likelihood
and Topology-Based Summary Methods

SEBASTIEN ROCH1, MICHAEL NUTE2, AND TANDY WARNOW3,∗
1Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr, Madison, WI 53706, USA;

2Department of Statistics, The University of Illinois at Urbana-Champaign, 725 S Wright St #101, Champaign, IL 61820, USA; and
3Department of Computer Science, The University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL 61801-2302, USA

∗Correspondence to be sent to: Department of Computer Science, The University of Illinois at Urbana-Champaign,
201 North Goodwin Avenue, Urbana, IL 61801-2302, USA;

E-mail: warnow@illinois.edu.

Received 16 March 2018; reviews returned 11 September 2018; accepted 12 September 2018
Associate Editor: Laura Kubatko

Abstract.—With advances in sequencing technologies, there are now massive amounts of genomic data from across all
life, leading to the possibility that a robust Tree of Life can be constructed. However, “gene tree heterogeneity", which is
when different genomic regions can evolve differently, is a common phenomenon in multi-locus data sets, and reduces the
accuracy of standard methods for species tree estimation that do not take this heterogeneity into account. New methods
have been developed for species tree estimation that specifically address gene tree heterogeneity, and that have been proven
to converge to the true species tree when the number of loci and number of sites per locus both increase (i.e., the methods
are said to be “statistically consistent"). Yet, little is known about the biologically realistic condition where the number of
sites per locus is bounded. We show that when the sequence length of each locus is bounded (by any arbitrarily chosen
value), the most common approaches to species tree estimation that take heterogeneity into account (i.e., traditional fully
partitioned concatenated maximum likelihood and newer approaches, called summary methods, that estimate the species
tree by combining estimated gene trees) are not statistically consistent, even when the heterogeneity is extremely constrained.
The main challenge is the presence of conditions such as long branch attraction that create biased tree estimation when
the number of sites is restricted. Hence, our study uncovers a fundamental challenge to species tree estimation using both
traditional and new methods. [Incomplete lineage sorting; partitioned likelihood analysis; species tree estimation; statistical
consistency.]

Species trees are a key aspect of much biological
research, including the detection of co-evolution, the
inference of ancestral traits, and the dating of speciation
events (Posada 2016). The availability of sequence data
collected from diverse species representing a broad
spectrum of life has led to the expectation that the
construction of a robust Tree of Life should be possible
using statistical estimation methods, such as maximum
likelihood. These estimations are increasingly based on
large numbers of loci (sometimes thousands) selected
from across the genomes of different species (Meredith
et al. 2011; Jarvis et al. 2014; Misof et al. 2014; Wickett et al.
2014; Cannon et al. 2016; Maddison 2016).

Many methods used for species tree estimation,
however, have been designed for gene tree estimation,
which is a simpler statistical estimation problem. For
gene tree estimation, the assumption is that the input
sequences have all evolved down a single model tree
(called the “gene tree”) under a sequence evolution
model, such as Cavender–Farris–Neyman (Neyman
1971; Farris 1973; Cavender 1978), Jukes–Cantor (Jukes
and Cantor 1969), or the Generalized Time Reversible
(GTR) model (Tavaré 1986). The estimation of the gene
tree under these models from the aligned sequence
data is a well-studied problem, and many statistically
consistent methods have been developed under these
models (Semple and Steel 2003). Species tree estimation
is much more complex, since gene trees can differ
from the species tree due to multiple causes, including
incomplete lineage sorting (ILS), as modeled by the

multi-species coalescent (MSC) model (Maddison 1997).
Indeed, many recent phylogenetic analyses of genome-
scale biological data sets for birds (Jarvis et al. 2014),
land plants (Wickett et al. 2014), worms (Cannon et al.
2016), and other organisms, have revealed substantial
heterogeneity across the genes that is consistent with ILS.

The construction of the species tree when there is
gene tree heterogeneity due to ILS can be seen as a
statistical estimation problem under a two-phase model
of sequence evolution where gene trees evolve within
a species tree under the MSC model, and then gene
sequences evolve down each gene tree under a sequence
evolution model. For example, under the MSC+JC model
where true gene trees evolve within the species tree
under the MSC model and gene sequences evolve down
the gene trees under the Jukes–Cantor (JC) model, the
estimation of species trees from gene sequence data
needs to use the properties of the evolutionary models
in order to be statistically consistent. One such approach
for species tree estimation is to estimate gene trees for
each locus, and then combine these gene trees into a
species tree using a coalescent-based summary method
(that takes gene tree incongruence due to ILS into
account); such approaches can be proven to converge
in probability to the true species tree as the number
of genes and number of sites per gene both increase.
Thus, for example, statistically consistent species tree
estimation under these conditions is possible under the
MSC+JC model when gene trees are estimated using
Jukes–Cantor maximum likelihood and then combined
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into a species tree using an appropriate coalescent-based
summary method. Examples of these summary methods
that enable statistically consistent species tree estimation
include MP-EST (Liu et al. 2010), NJst (Liu and Yu
2011), ASTRID (Vachaspati and Warnow 2015), ASTRAL
(Mirarab et al. 2014b; Mirarab and Warnow 2015), STEM
(Kubatko et al. 2009), STEAC (Liu et al. 2009), STAR (Liu
et al. 2009), and GLASS (Mossel and Roch 2010).

In contrast, many species trees are estimated using
“unpartitioned maximum likelihood”, where the gene
sequence alignments are concatenated into a single
supermatrix, and a tree is then estimated on that
supermatrix under the assumption that all the sites
evolve under the same model tree. As shown by Roch and
Steel (2015), this approach is not statistically consistent
and can even be positively misleading in the presence of
gene tree heterogeneity due to ILS.

Although unpartitioned concatenated analysis
with maximum likelihood (CA-ML) is known to be
statistically inconsistent and coalescent-based species
tree methods can be statistically consistent, performance
in practice (and in particular on simulated data sets)
has been mixed, with CA-ML sometimes more accurate
than leading summary methods (Leaché and Rannala
2010; Patel et al. 2013; Mirarab et al. 2014a, Bayzid
et al. 2015; Chou et al. 2015; Molloy and Warnow 2017).
One of the challenges to using summary methods
is gene tree estimation error, resulting in part from
limited sequence lengths per gene (Bayzid and Warnow
2013). The “statistical binning” approach (Mirarab
et al. 2014a) was designed to improve the accuracy
of species trees estimated using summary methods
by binning sequences from different genes together
using statistical techniques for detecting strongly
supported incongruence (e.g., using bootstrap support
on estimated gene trees) and then estimating new gene
trees on the combined data sets. As shown in Bayzid
et al. (2015), weighted statistical binning (WSB) (an
improved version of the original statistical binning
approach) followed by appropriate summary methods
is statistically consistent under the MSC+JC model
under the condition that the number of genes and
number of sites per gene both increase.

Note however that the guarantees of statistical
consistency provided so far have nearly always made the
following assumptions: every locus is recombination-
free, the number of sites per locus increases without
bound, and the number of loci increases without bound.
These assumptions are unrealistic, since recombination-
free loci are generally short. Therefore, of greater
relevance to practice is the question of statistical
consistency where the number of recombination-free loci
increases, but the number of sites per locus is bounded
by some L∈Z+ (Warnow 2015; Roch and Warnow 2015).
We investigate this question for the following methods:

• fully partitioned maximum likelihood,

• topology-based summary methods (i.e., methods
that combine gene tree topologies), and

• weighted statistical binning pipelines followed by
topology-based summary methods.

We address this question under the MSC+CFN model,
where the CFN is the symmetric two-state sequence
evolution model (i.e., the two-state version of the Jukes–
Cantor model). Perhaps surprisingly, our results are
negative: for all L, none of the approaches is statistically
consistent under the MSC+CFN model and can even
be positively misleading. Furthermore, this problematic
behavior occurs even when all the genes evolve down
a single model CFN tree. Therefore, expectations of
accurate species trees using any of these methods given
large amounts of data may be unfounded.

The key challenge to species tree estimation is long
branch attraction, a phenomenon that can confound
maximum likelihood tree estimation when sequence
lengths for each genomic region are finite. In fact,
we show that many species tree estimation methods
that are statistically consistent when the number of
genomic regions and their lengths both increase become
inconsistent when only the number of regions increases,
and the sequence length for each genomic region is
bounded (however arbitrarily). These results suggest
that many of the common approaches to species tree
estimation are far from being mathematically rigorous,
even under highly simplified model conditions where
there is no heterogeneity between the loci. This is a
very substantial limitation for multi-locus phylogeny
estimation methods in general and shows that new
approaches for species tree estimation are needed.

EVOLUTION UNDER THE MSC
Our analysis is based on the MSC+CFN model. A CFN

model gene tree is an unrooted binary tree (T ,�) with
topology T and branch lengths �. Under the assumption
that the tree has n leaves, each site (character) � refers
to the length-n vector of character states corresponding
the same homologous site for each taxon. The possible
character states are {0,1} and evolutionary changes
are modeled by a continuous-time Markov process

with instantaneous rate matrix Q=
(−1/2 1/2

1/2 −1/2

)
. In

particular, the probability of a change along a branch of

length � is parameterized as p= 1
2

(
1−e−2�

)
. Under the

MSC+CFN model, each locus j evolves independently
on a random gene tree (Tj,�j), which is derived from
the MSC on a species tree (S,�,�), where the �es are the
branch lengths in units of �e =2Ne�e with Ne and �e the
effective population size and mutation rate of branch e.
That is, on each branch e of S, looking backwards in
time, lineages entering the branch coalesce at rate 2/�e
according to the Kingman coalescent. The remaining
lineages at the top of the branch enter the ancestral
population, and so on (see Fig. 1 for an illustration).

We assume that all m loci evolve on the same species
tree and that each locus has a constant, finite sequence
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FIGURE 1. A species tree (S,�,�), represented above by the “box
tree,” together with a gene tree (T ,�) inside it. An incomplete lineage
sorting event is depicted: in branch e of the species tree the lineages
from a and b fail to coalesce, thereby producing an unrooted topology
forT (i.e., ad|bc) that differs from the unrooted topology of S (i.e., ab|cd).

length L. Let �ij represent site i on locus j, where 1≤ i≤L
and 1≤ j≤m, and let �·j represent the set of all characters
for locus j. We refer to the�·j as j-th locus sequences. Denote
the entire set of characters on all loci as X.

Inconsistency of Partitioned Maximum Likelihood

Let L(T 0,�,�) denote the likelihood function for a
single site � under the CFN model on (T 0,�), and let
�= logL be the log-likelihood. Under fully partitioned
maximum likelihood, we seek a single binary tree
topology T 0 but allow each locus to have its own branch
length parameter �j; hence, the general likelihood
function over all sites and all loci is

�∗(T 0,�1,...,�m,X) =
m∑

j=1

L∑
i=1

�(T 0,�j,�ij),

and a maximum likelihood topology is any element of
the set

argmax
T 0

max
�1,...,�m

�∗(T 0,�1,...,�m,X). (1)

Theorem 1 (Inconsistency of partitioned ML). Under
the MSC+CFN model, fully partitioned maximum likelihood
on loci with a bounded number of sites is not statistically
consistent and is even positively misleading. That is, for any
length L∈N, there is a species tree with topology, branch
lengths and mutation rates such that, given data generated
under the MSC+CFN model, as the number of loci m→∞,
the maximum likelihood topology is unique and is different
from the true species tree topology with probability going to 1.

The proof of this theorem is provided in Section “Proofs
of the Main Results” of the Appendix.

Inconsistency of Topology-Based Summary Methods
Summary methods have been developed that are

designed to address heterogeneity between gene tree
topologies due to ILS and are statistically consistent
under the MSC model. We consider topology-based
summary methods that take as input unrooted gene
trees, and only use their topologies and not any
additional information (e.g., sequence data, branch
lengths, bootstrap support).

• We assume that the tree provided for a given gene
sequence alignment is its maximum likelihood
gene tree, and if there is a tie for the best maximum
likelihood tree topology, then a random best-
scoring tree is selected.

When the number of species is four, then the summary
method is selecting the best unrooted tree topology
from the three possible unrooted tree topologies, also
referred to as quartet trees. By Allman et al. (2011),
under the MSC the most probable quartet tree is the true
species tree for any four species (i.e., there is no anomaly
zone on unrooted four-leaf species trees). Hence, in
the four species case, we will make the assumption
that the summary method will return the tree topology
that appears the most frequently among its input gene
trees, as this is a statistically consistent technique for
estimating the unrooted species tree on four leaves. We
refer to this most frequent quartet tree as the “dominant”
quartet tree. That is, we restrict ourselves to the following
“reasonable” property of a summary method A:

• When n=4, as the number of loci m increases then
with probability converging to 1, A(T1,...,Tm)= t
where t is the quartet tree that appears with the
highest frequency in the input T1,...,Tm; if there
are ties, then A picks uniformly at random between
the most frequent quartet trees.

We will say that the summary method A is reasonable if
it satisfies this property. Many of the popular summary
methods (e.g., ASTRAL and BUCKy, Larget et al. 2010)
are reasonable in that sense.

Theorem 2 (Inconsistency of reasonable summary
methods). Under the MSC+CFN model, any reasonable
summary method A with maximum likelihood input trees
on loci with a bounded number of sites is not statistically
consistent. That is, for any length L∈N, there is a species
tree with topology, branch lengths, and mutation rates, such
that given data generated under the MSC+CFN model, as
the number of loci m→∞, the topology produced by A is
unique and is different from the true species tree topology with
probability going to 1.

Inconsistency of Weighted Statistical Binning Followed by a
Summary Method

The “statistical binning” method, and its improved
version “weighted statistical binning”, were developed
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to address challenges in species tree estimation that
result from gene tree estimation error. In Bayzid
et al. (2015), it was shown that statistical binning
was inconsistent under the MSC+CFN model but that
WSB was statistically consistent. Those proofs depend
crucially on the number of sites per locus increasing
to infinity, and so this previous work did not address
the case we consider here, where each site has length
bounded by L.

In a WSB pipeline, estimated gene trees with bootstrap
support are provided for every locus, and then an
incompatibility graph is computed for that set of gene
trees with branch support. The graph is used to partition
the genes into sets (called “bins”) and then “supergene
trees” are computed using a fully partitioned maximum
likelihood analysis on each bin. These supergene trees
are then given to the selected summary method as input,
and a species tree is returned. In a WSB pipeline, each
supergene tree is replicated by the number of genes in its
associated bin. The incompatibility graph depends on a
parameter B, a proportion in [0,1], as follows: two gene
trees are considered to be incompatible if there is a pair of
edges, one from each tree, each with bootstrap support
strictly greater than B, that conflict. Hence, if B=1, then
no two trees can be considered incompatible.

Theorem 3 (Inconsistency of WSB pipeline followed
by reasonable summary method). Under the multi-locus
MSC+CFN model, with a single site evolving down each gene
tree, the WSB pipeline followed by a reasonable summary
method is not statistically consistent.

The proof of this theorem is given in the Appendix,
and establishes that when each locus has a single
site then there is a B<1 and a tree with topology,
branch lengths, and mutation rates such that, given data
generated under the MSC+CFN model, as the number
of loci m→∞, the distribution produced by the WSB
pipeline with support threshold B is “approximately
flat.” Hence, the application of A to this distribution
will not converge to the true species tree topology with
probability going to 1. Intuitively the WSB pipeline is
not statistically consistent under the MSC+CFN model
because uninformative genes can “swamp the bins” and
produce a flat distribution.

One possible modification to the WSB pipeline, which
we refer to as the WSB* pipeline, is to remove all genes
that have no branches with “strong” bootstrap support:

• Remove all gene trees that do not support any
internal edge above the bootstrap threshold B from
the analysis before doing any binning.

This is one way—which can be analyzed rigorously—to
address the problem above in that the distribution is no
longer made “flat” by uninformative genes. However, we
still show:

Theorem 4 (Inconsistency of WSB* pipeline followed
by reasonable summary method). The WSB* pipeline
followed by A is not only not statistically consistent but is

FIGURE 2. A four-taxon tree.

positively misleading. That is, for any length L∈N, there
is a B<1 and a species tree with topology, branch lengths,
and mutation rates such that, given data generated under the
MSC+CFN model, as the number of loci m→∞, the topology
produced by A after going through the WSB* pipeline with
support threshold B is unique and is different from the true
topology with probability going to 1.

THEORETICAL FRAMEWORK

Our analysis in fact establishes a stronger—
perhaps more counter-intuitive—result. We show
that partitioned maximum likelihood, topology-based
summary methods, and weighted statistical binning
pipelines are statistically inconsistent for multi-locus
evolution where there is no gene tree heterogeneity at all
and when all loci have only L sites for any arbitrarily
selected L. By a continuity argument, we also establish
that these negative results imply that these methods,
which were designed to address heterogeneity across
the genome resulting from ILS, are also statistically
inconsistent under the MSC+CFN model.

Setting for Analysis

Fix T 0 to be the four-taxon topology ab|cd on {a,b,c,d}
and let �0 denote a vector of branch lengths on T 0 under
the CFN model. Specifically, denote the endpoint of the
middle edge on the ab side as e, and on the cd side as f
(see Fig. 2). For this tree, denote the length of branch ae
as �0

a , be as �0
b , cf as �0

c , df as �0
d, and ef as �0

m.
For a branch length �, we will also use the

parameterization 	=−1
2 log� in terms of which the

probability of a change along this branch is

p= 1
2

(
1−e−2�

)
= 1

2
(1−	), (2)

and the probability of no change is q= 1
2 (1+	). See

(Semple and Steel, 2003, Section 8.6) for more details on
this standard parameterization. Denote the p-, q-, and
	-parameters as defined above for each branch using the
same subscripts. We choose �0 to construct a Felsenstein
zone tree (i.e., a four-leaf model tree where some tree
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estimation methods are positively misleading, as shown
in Felsenstein (1978)) where, for a parameter 
>0, p0

a =
p0

c =
 and p0
b =p0

d =p0
m =
3. Note that for any 
>0,

we can set �0
a =�0

c =− 1
2 log(1−2
) and �0

b =�0
d =�0

m =
−1

2 log(1−2
3) to satisfy this relationship. We assume
that the characters �·j, j=1,2,..., are generated under
the CFN model on (T 0,�0). We also denote the alternate
topologies by T ∗ =ac|bd and T 1 =ad|bc.

Basic Claims
The key step in proving our main theorems is to

establish the following three claims. In the first claim,
we show that for any sequence length L, by taking
the mutation rate small enough (through choosing 
)
in the four-taxon species tree (T 0,�0) described above
we can ensure that the wrong topology is chosen by
partitioned ML in the limit of large gene numbers.
The idea behind the proof is described in the Section
“Analysis of Partitioned ML” below. This claim implies
Theorem 1 in the absence of incomplete lineage sorting. We
then show in the Appendix that the effect of the MSC
can be made negligible.

Claim 1 (Partitioned ML: Felsenstein zone). Assume that
the length-L locus sequences �·j, j=1,2,..., are generated
under the CFN model on (T 0,�0) and let T̂j be the fully
partitioned maximum likelihood topology obtained from the
sequences of the first j loci. For any length L≥1, there is

>0 small enough such that, with probability one, T̂j →T ∗
as j→+∞.

In the second claim, we show that for any sequence
length L, by taking the mutation rate small enough in
the species tree (T 0,�0) we can ensure that the wrong
topology is chosen by any reasonable summary method
in the limit of large gene numbers. The proof is similar
to that of the previous claim, including the extra step
to account for the effect of the MSC, as described in the
Appendix.

Claim 2 (Reasonable summary methods: Felsenstein
zone). Assume that the length-L locus sequences �·j, j=
1,2,..., are generated under the CFN model on (T 0,�0) and
let T̂j be the topology obtained from a reasonable summary
method A on the sequences of the first j loci using maximum
likelihood. For any length L≥1, there is 
>0 small enough
such that, with probability one, T̂j →T ∗ as j→+∞.

Finally in the third claim, we show that for any
sequence length L, by taking the mutation rate small
enough in the species tree (T 0,�0) we can ensure that
the wrong topology is chosen by the WSB* pipeline
(for a range of threshold B) followed by any reasonable
summary method in the limit of large gene numbers. The
idea of the proof is described in the Section “Analysis of
WSB* Pipeline.”

Claim 3 (WSB* pipeline: Felsenstein zone). Let 1−
2
3

(
1
L

)L ≤B<1. Assume that the length-L locus sequences �·j,
j=1,2,..., are generated under the CFN model on (T 0,�0)
and let T̂j be the topology obtained from the WSB* pipeline
with threshold B followed by a reasonable summary method A
on the sequences of the first j loci. There is 
>0 small enough
such that, with probability one, T̂j →T ∗ as j→+∞.

While the claims above are established under the multi-
locus CFN model with a single tree, we show in the
Appendix that these results also apply to the MSC+CFN
model by choosing a species tree, which is highly likely
to produce gene trees matching the species tree.

Analysis of Partitioned ML
We describe the main ideas used to prove Claim 1.

First, we note that the case L=1 of a single
site per gene corresponds to the No Common
Mechanism model of Tuffley and Steel (1997), under
which it was shown that maximum likelihood
is equivalent to maximum parsimony, establishing
statistical inconsistency (together with Felsenstein
(1978)).

So we assume from now on that L≥2. Extending
the results of Tuffley and Steel (1997) to this more
general multi-locus setting requires a delicate asymptotic
argument. We proceed as follows:

(a) By choosing 
 small enough, we show that we can
restrict the analysis to the five most common data
set types, which we refer to as locus patterns.

(b) We then show that, for these locus patterns, the
likelihood on T ∗ dominates the likelihood on
T 0,T 1, and that this domination is strict in one
case.

Under our choice of branch lengths, as 
→0, the five
most common locus patterns, which we refer to as
dominant (see Lemma 1 below for justification), are:

1. All constant sites: Every character has the same state
on all four taxa, but that state can change from
one character to another (e.g., xa =xb =xc =xd =
0001010). We let X0 be the set of such data sets
and we let Q0 be the probability of observing any
x∈X0 under (T 0,�0).

2. One singleton site on a or c: All sites are constant
except for one, on which either a or c is different
from all others (e.g., xa =0111110, xb =xc =xd =
1111110). We let X11 be the set of such data sets
and we let Q11 be the probability of observing any
x∈X11 under (T 0,�0).

3. Two identical singleton sites on a or c: All sites are
constant except for two, each of which has the
same taxon a or c different from the others (e.g.,
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xa =0011110, xb =xc =xd =1111110). We let X2= be
the set of such data sets and we let Q2= be
the probability of observing any x∈X2= under
(T 0,�0).

4. Two different singleton sites on a and c: All sites
are constant except for two, one of which has
a different character state on a and the other a
different character state on c (e.g., xa =1001110, xc =
0101110, xb =xd =0001110). We let X2�= be the set of
such data sets and we let Q2�= be the probability of
observing any x∈X2�= under (T 0,�0).

5. One site with a 2/2-split ac|bd: L−1 sites are constant
with a single site having a and c different from b
and d (e.g., xa =xc =1001110, xb =xd =0001110). We
let X12 be the set of such data sets and we let Q12
be the probability of observing any x∈X12 under
(T 0,�0).

Note that above only the last pattern is informative and
it supports the split in T ∗ rather than T 0. Let X̃ be the
set of all remaining locus patterns.

The next lemma, which encapsulates the key technical
steps in the proof of Theorem 1, has two parts: in
(a) the probability of observing the dominant locus
patterns is bounded analytically; in (b) we show that
the wrong topology has higher expected locus-wise
likelihood under these dominant patterns. Claim 1 then
follows by the law of large numbers, as detailed in the
Appendix.

Lemma 1 (Dominant patterns and their likelihood
contributions). Assume L≥2.

(a) The probabilities of observing the dominant locus
patterns are bounded as follows:

Q0 =
(

1
2

)L
−O(
), Q11 =O(
), Q2= =O(
2),

Q2�= =O(
2) and Q12 =
(

1
2

)L

2 +O(
3).

Moreover, for all x∈X̃ , the probability of observing x
under the CFN model on (T 0,�0) is O(
3).

(b) For all x∈X0 ∪X11 ∪X2=∪X2�=, it holds that

sup
�

�(T ∗,�,x)−sup
�

�(T 0,�,x)≥0,

while, for all x∈X12,

sup
�

�(T ∗,�,x)−sup
�

�(T 0,�,x)≥K12 >0,

for some positive constant K12 depending only on L. The
same holds if one replaces T 0 with T 1 above.

Note that the big-O notation implicitly includes the
contribution from L, which we treat as a constant. The
detailed proofs of Lemma 1 and Claim 1 are provided in

the Appendix. Claim 2 follows from a similar argument,
which is also detailed in the Appendix.

Analysis of WSB* Pipeline
Our analysis of the WSB* pipeline follows along

similar lines. Our key additional observation is that, by
choosing an appropriate bootstrap threshold, we ensure
that the only loci passed on to the summary method
are “saturated,” that is all their sites correspond to an
equivalent character. The rest of the analysis is similar to
Claim 2 and relies on the fact that the loci passed on to the
summary method are dominated by the “wrong split.”
Formally, we say that two characters are equivalent if
they are identical up to switching 0s and 1s. We say that
a locus pattern x is saturated if all characters in x are
equivalent. On four taxa, there are only three types of
saturated patterns:

1. All-constant: Every character has the same value on
all four taxa (e.g., xa =xb =xc =xd =0001010). We
let X s

0 be the set of such data sets and we let Qs
0

be the probability of observing any x∈X s
0 under

(T 0,�0).

2. All-singleton on a fixed taxon: All sites have the same
taxon different from all others (e.g., xa =0101111,
xb =xc =xd =1010000). We let X s

1 be the set of
such data sets and we let Qs

1 be the probability of
observing any x∈X s

1 under (T 0,�0).

3. All-2/2-split with a fixed split: All sites have two fixed
taxa—say, a and c—identical, while being different
from the other two taxa—b and d—(e.g., xa =xc =
1010111, xb =xd =0101000). We let X s

ac|bd be the set
of such data sets for the split ac|bd and we let Qs

ac|bd
be the probability of observing any x∈X s

ac|bd under

(T 0,�0) (and similarly for the other possible splits).
For short, we refer to this type of data sets as split-
saturated genes.

The next lemma, which encapsulates the key technical
steps in the proof of Theorem 4, has two parts: in (a)
the probability of observing the saturated locus patterns
is bounded analytically, with the wrong topology
being more common; in (b) we show that, under
each informative saturated pattern, the corresponding
topology has higher expected locus-wise likelihood.
Claim 3 then follows by the law of large numbers, as
detailed in the Appendix.

Lemma 2 (Saturated genes).

(a) Under the WSB* pipeline with threshold B≥1−
2
3

(
1
L

)L
, the only length-L locus sequences passed on

to the summary method are the ones in X s
ac|bd, X s

ab|cd,
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and X s
ad|bc. Moreover,

Qs
ac|bd =

(
1
2

)L

2L +O(
2L+1),

while

Qs
ab|cd =O(
3L), Qs

ad|bc =O(
3L).

(b) For any x∈X s
ab|cd, the topology ab|cd is the unique ML

optimizer. And similarly for the other splits.

The detailed proofs of Lemma 2 and Claim 3 are
provided in the Appendix.

DISCUSSION

Our results show that fully partitioned maximum
likelihood is inconsistent (even positively misleading)
even when there is no gene tree heterogeneity at
all (i.e., when all loci evolve down a common CFN
model tree), and hence by continuity under the multi-
locus MSC+CFN model. The inconsistency result occurs
because each locus has at most L sites (for an arbitrarily
selected bound L), and the loci all evolve down gene trees
that have long branch attraction (LBA). It is well known
that maximum likelihood is statistically consistent even
in the presence of LBA, but our results show that LBA is
sufficient to bias fully partitioned ML towards the same
wrong tree on each locus, and hence towards the same
wrong tree for the partitioned concatenation analysis.

The same argument is used to establish that reasonable
summary methods and weighted statistical binning
pipelines that use these reasonable summary methods
can be positively misleading when each locus has only
L sites, even when there is no gene tree heterogeneity.
Hence, summary methods and WSB pipelines do
not solve this challenge, either. All the methods we
addressed in this study can be seen as partitioned
analyses—partitioned maximum likelihood estimates
numeric parameters for each locus but keeps the
tree topology the same across the loci, and summary
methods estimate the gene trees independently across
the loci. The fundamental challenge to multi-locus
species tree estimation using these partitioned analyses
(whether partitioned maximum likelihood or summary
methods) is that maximum likelihood tree estimation is
impacted by conditions such as LBA when the number
of sites is not allowed to increase.

It is interesting to consider unpartitioned maximum
likelihood under the same set of conditions. When
all the loci evolve down the same CFN model tree,
even though each locus has only L sites, as the
number of loci increases, the unpartitioned maximum
likelihood analysis will converge to the true tree;
thus, unpartitioned maximum likelihood analysis is
consistent under this setting. On the other hand,
when there is gene tree heterogeneity resulting from
ILS (as modeled by the MSC), then unpartitioned
ML is inconsistent and can be positively misleading

(Roch and Steel 2015). Hence, unpartitioned maximum
likelihood can be statistically consistent under one
setting and inconsistent (and even positively misleading)
under another. In other words, unpartitioned maximum
likelihood is not the solution to the challenge raised by
this study.

Our analysis does not apply to multi-locus methods
that estimate the species tree directly from sequence
data—without a gene tree reconstruction step. These
include for instance METAL (Dasarathy et al. 2015),
SNAPP (Bryant et al. 2012), SVDquartets (Chifman
and Kubatko 2014; Chifman and Kubatko 2015;
Long and Kubatko 2017), and *BEAST (Heled and
Drummond 2009). In particular, METAL has been
shown to be consistent on finite-length genes under
some assumptions on the MSC (Dasarathy et al. 2015).
It is also worthwhile pointing out that our results,
while being based on the MSC, are likely to hold more
generally for other sources of gene tree discordance,
including horizontal gene transfer (HGT). Indeed, as
long as rates of HGT are low enough, in the Felsenstein
zone similar conclusions about inconsistency will follow
for partitioned ML and summary-based methods.

CONCLUSION

Prior to this study, many coalescent-based species
tree estimation methods were assumed to be statistically
consistent under this regime, but no proofs had been
provided. This study now establishes that many of the
standard methods used in phylogenomic species tree
estimation are statistically inconsistent.

Moreover, only a small number of methods have
been proven to be statistically consistent for bounded
L. Some of the summary methods described in Roch and
Warnow (2015) for instance are statistically consistent for
L=1, but the proofs depend on the strict molecular clock.

When the strict molecular clock assumption does
not hold, few methods are statistically consistent for
bounded L. METAL (Dasarathy et al. 2015) is one of
the few coalescent-based methods that does not require
a molecular clock, and that has been proven to be
statistically consistent under the MSC+CFN model. It
should be noted however that the model of evolution
in Dasarathy et al. (2015) allows mutation rates to
vary across branches of the species tree, but those
rates must be the same across loci, a major constraint.
More recently, a log-det distance based extension of
METAL has been shown consistent under more general
models of substitution and population size variation,
as well as certain clock-constrained models allowing
variation of rates across loci (Allman et al. 2018).
SVDquartets (Chifman and Kubatko 2014), a quartet-
based method which has also been formally shown
to be statistically consistent (Kubatko 2018), builds on
identifiability results (Chifman and Kubatko 2015; Long
and Kubatko 2017) that allow mutation rate variation
across sites on each gene, not necessarily under a
molecular clock. Much remains to be understood about
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the important theoretical question of fixed locus length
consistency of multi-locus methods in general.
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APPENDIX
INCONSISTENCY OF WSB ON A SINGLE SITE

Here, we show that the weighted statistical binning
pipeline (as defined in Bayzid et al. (2015)) is not
statistically consistent when L=1 for some four-species
model tree. Recall that a WSB pipeline proceeds along
the following main steps:

1. Estimated gene trees with bootstrap support are
provided for every locus. To be more specific,
bootstrap support is obtained by re-sampling L
sites with replacement from each locus and for
each split in the estimated gene tree. For the
purposes of the proof below, we assume that exact
bootstrap support values are used (i.e., in the limit
of infinitely many samples).

2. Then an incompatibility graph is computed for
that set of gene trees. The incompatibility graph
depends on a parameter B, a proportion in [0,1],
as follows: two gene trees are considered to be
incompatible if there is a pair of edges, one from
each tree, each with bootstrap support strictly
greater than B, that are not compatible (see Semple
and Steel 2003).

3. This incompatibility graph is used to partition the
genes into bins using a minimum vertex coloring
heuristic. To balance the bins (i.e., vertex colors),
the algorithm processes genes one by one in a
particular order and adds each gene to the smallest
bin that has no incompatibility with it. When two
or more bins have the same smallest size, the
algorithm breaks the ties arbitrarily.

4. Next, supergene trees are computed using a fully
partitioned maximum likelihood analysis on each
bin. These supergene trees are then given to the
selected summary method as input, and a species
tree is returned. In a weighted statistical binning
pipeline, each supergene tree is replicated by the
number of genes in its associated bin.

We begin our analysis with a lemma characterizing
the contents of the bins in the single-site-per-locus case.

Lemma 3. Let S be a model species tree with four species
a,b,c,d, and suppose every locus has only one site. In a
weighted statistical binning pipeline with bootstrap support
threshold B≥ 1

3 , there will at most three bins, one for each

of the three possible binary topologies on four leaves, and
the bin associated with topology ab|cd will have all the
ML-informative genes that support ab|cd.

Proof . Because there is only one site for each gene, the
ML-informative genes have bootstrap support of 100%.
Hence, no two ML-informative genes can be placed in
the same bin if they support different tree topologies.
Therefore, for any bin, the ML-informative genes placed
in the bin will support the same topology. Also, the
ML-uninformative genes produce trees with bootstrap
support equal to 1

3 , since every tree topology has equal
maximum likelihood score. These genes are therefore
considered compatible with every other gene, since the
bootstrap support threshold B≥ 1

3 .
Since there are only three tree topologies, the

incompatibility graph is the union of a complete 3-
partite graph (defined by the ML-informative genes)
and a collection of isolated vertices (defined by the
ML-uninformative genes). Hence, the incompatibility
graph can be 3-colored. Since statistical binning seeks the
minimum vertex coloring for the incompatibility graph,
it will partition the genes into three bins, with one bin for
each binary tree topology. Hence, the ML-informative
genes are partitioned into three sets based on the tree
topology they support. �

We continue with an analysis of WSB pipelines
followed by reasonable summary methods in the case
of a single site per gene. The following result implies
Theorem 3.

Claim 4. Suppose every gene has only one site, and let (S,�,�)
be a MSC+CFN model species tree with leaves a,b,c,d. Let
B≥ 1

3 . There is a choice of branch lengths such that, for all
binary trees t on a,b,c,d, the probability that a random gene is
ML-informative and supports t is < 1

3 . Moreover, in that case,
weighted statistical binning followed by a reasonable summary
method will not be statistically consistent.

Proof . The argument will establish that, under
the conditions of the theorem, as the number of
genes increases, the WSB binning process will roughly
speaking converge to a flat distribution on the three
possible tree topologies on a,b,c,d, so that any reasonable
summary method will be inconsistent. More formally,
our analysis is based on three basic observations.
Observation 1 [One bin for each topology]: By Lemma 3, in
a weighted statistical binning pipeline, there will be at
most three bins, one for each binary tree topology, and
the bin for binary tree t (if non-empty) will have all genes
that are ML-informative and support the split for t, and
may also have ML-uninformative genes. Furthermore,
the ML-uninformative genes can be distributed to the
bins arbitrarily, since their bootstrap support is exactly 1

3
and B≥ 1

3 .
Observation 2 [Partitioned ML = MP]: Since every gene
has only one site, the supergene alignment associated
to the bin for ab|cd will consist of sites that all split
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ab|cd. As pointed out at the beginning of the Section
“Analysis of Partitioned ML,” in the single site per gene
case partitioned maximum likelihood is equivalent to
maximum parsimony (Tuffley and Steel 1997). Hence,
when a fully partitioned ML analysis is applied to the
bin for t, the resultant supergene tree will be the tree t.
In a WSB pipeline, the supergene trees for each bin will
be replicated as many times as the number of genes in the
bin for t. These trees are the newly computed gene trees
that will be passed to the reasonable summary method.

Observation 3 [Swamped bins are balanced]: As we
explained at the beginning of this section, the division
of genes into bins attempts to achieve balanced bins, so
that the number of genes in each bin will be as close
to the same as possible. Therefore, if the probability
that a gene is ML-uninformative is sufficiently high
and the number of genes is divisible by 3, then it will
be possible to achieve perfectly balanced bins, and the
distribution of newly computed gene trees will be the flat
distribution. But reasonable summary methods cannot
infer the species tree from flat distributions.

It remains to quantify the three observations
above and formally establish the failure of statistical
consistency. Per Observation 3, we take the number
m of genes to be a multiple of 3. For a fixed species
tree topology S, as long as all branch lengths are
strictly positive, each site pattern has strictly positive
probability. Let �� be the smallest such probability under
branch lengths �. Then the probability that any of the six
ML-informative patterns is never observed among the
m genes is at most 6(1−��)m, which rapidly converges
to 0 as m→+∞. Per Observation 1, with probability
at least 1−6(1−��)m, there will be one bin for each
topology, an event we denote by E1

�,m. On the other
hand, by taking all branch lengths small enough, one
can ensure that the constant site patterns have overall
probability >2/3, which in particular implies that, for
each binary tree t, the probability of an ML-informative
pattern corresponding to t is <1/3 as claimed. Let � be
such a choice of branch lengths and let �� <1/3 be the
largest probability of an ML-informative pattern over all
topologies t. For any 
<1/3−��, by the law of large
numbers, the probability of the following event E2

�,m
goes to 1 as m→+∞: every bin has at most (��+
)m ML-
informative patterns. Because m is divisible by three, the
uninformative patterns are distributed among the bins
to make them exactly of the same size, in the event E1

�,m ∩
E2

�,m. By Observation 2, in that event, each bin produces
exactly m/3 supergene trees, with one bin for each
topology t. Under a reasonable summary method, when
all topologies are represented exactly the same number
of times, the output is chosen uniformly at random. In
particular, the probability of correct reconstruction is
1/3. Since the probability of the event E1

�,m ∩E2
�,m is going

to 1 as m increases through multiples of 3, the probability
of reconstruction converges to 1/3 on that subsequence,
and we have established that the probability of correct

reconstruction cannot converge to 1—hence statistical
consistency fails. �

PROOFS OF THE MAIN RESULTS
We provide detailed proofs of the main claims.

Key Lemmas
Proof of Lemma 1. Recall that we assume L≥2.
(a) Under our choice of branch lengths, as �→0, the

five most common locus site patterns are:

1. All constant sites: Every character has the same
value on all four taxa (e.g., xa =xb =xc =xd =
000101). For any such x∈X0, x occurs with
probability

Q0 =
[

1
2

(
1−
3

)3(
1−


)2 +O(
)
]L

=
(

1
2

)L
−O(
),

where the first term in the brackets corresponds
to the case of no substitution, while the second
term accounts for all possibilities with at least
one substitution. For convenience, we denote the
expression in brackets—the probability of a single
site being identical on all four taxa—as q0.

2. One singleton site on a or c: All sites are constant
except for one, on which either a or c is different
from all others (e.g., xa =01..., xb =xc =xd =11...).
Any data set with this locus site pattern occurs with
probability

Q11 =qL−1
0

[
1
2

(1−
3)3(1−
)
+O(
2)
]
=O(
),

where the first term in the brackets corresponds
to the case of a single substitution along the edge
leading to the differing taxon, while the second
term accounts for all possibilities involving at least
two substitutions.

3. Two identical singleton sites on a or c: All sites are
constant except for two, each of which has the same
taxon a or c different from the others (e.g., xa =
001..., xb =xc =xd =111...). Any data set with this
locus site pattern occurs with probability

Q2= =qL−2
0

[
1
2

(1−
3)3(1−
)
+O(
2)
]2

=O(
2),

which follows from the same computation as in the
one singleton case.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/2/281/5104882 by U

niversity of W
isconsin-M

adison Libraries user on 16 August 2019



Copyedited by: MANUSCRIPT CATEGORY: Regular Manuscript

[18:56 23/1/2019 Sysbio-OP-SYSB180061.tex] Page: 290 281–297

290 SYSTEMATIC BIOLOGY VOL. 68

4. Two different singleton sites on a and c: All sites
are constant except for two, one of which has a
different character on a and the other a different
character on c (e.g., xa =100..., xc =010..., xb =xd =
000...). Any data set with this locus site pattern
occurs with probability

Q2�= =qL−2
0

[
1
2

(1−
3)3(1−
)
+O(
2)
]2

=O(
2),

which follows from the same computation as in the
one singleton case.

5. One site with a 2/2-split ac|bd: L−1 sites are constant
with a single site having a and c different from
b and d (e.g., xa =xc =100..., xb =xd =000...). Any
data set with this locus site pattern occurs with
probability

Q12 =qL−1
0

[
1
2

(1−
3)3
2 +O(
3)
]

=
(

1
2

)L

2 +O(
3), (A.1)

where the first term in the brackets corresponds to
the case of substitutions along the edges leading to
the differing taxa, while the second term accounts
for all possibilities with at least one substitution
along the other edges.

Any remaining locus site pattern must include either
a change along one of the short branches, which involves
multiplication by 
3, or three changes along one of the
long branches, which also means multiplication by 
3.
Thus all x in X̃ have probability O(
3). That concludes
the proof of the claim in (a).

(b) It remains to prove (b). For each locus site pattern,
we will put an upper bound on the maximum of the
likelihood function for topology T 0 =ab|cd, and show
that in every case the alternate topology T ∗ =ac|bd has
maximum likelihood greater than or equal to this upper
bound, and in at least one case is strictly greater.

Some remarks about notation first. Note that the
labels we have used for the branch lengths of T 0 can
be used similarly regardless of the topology of the
tree: �m represents the middle branch in any topology,
and the others represent the branch leading to their
respective taxon. Also we use � and � interchangeably,
where � is the corresponding collection of 	-parameters
as defined in (2). Finally, we will use the following
property of the 	-parameterization (Semple and Steel
2003): the 	’s multiply along paths; indeed, we have for

instance,

Px∼(T 0,�0)[xa
1 �=xb

1]
= (1−p0

a)p0
b +p0

a(1−p0
b)

= 1
2

(1+	0
a)

1
2

(1−	0
b)+ 1

2
(1−	0

a)
1
2

(1+	0
b)

= 1
2

(1−	0
a	

0
b). (A.2)

Finally, because by inclusion the probability of
observing �·1 is at most the probability of observing �a1,

which is simply
(

1
2

)L
by independence of the sites, we

have

sup
�

�(T ,�,�·1)≤ log
(

1
2

)L
=−Llog2. (A.3)

We divide up the proof of by locus site pattern.

1. All constant sites: Recall from (A.3) that, for any T
(and, in particular, for T 0),

sup
�

�(T ,�,x)≤−Llog2.

For x∈X0, that can always (in particular, for T ∗)
be achieved by setting all branch lengths to 0.

2. One singleton site on a or c: Without loss of generality,
assume the non-constant site is site 1 and that
it has (xa

1,x
b
1,x

c
1,x

d
1)= (1,0,0,0). Assume also that

(xa
i ,x

b
i ,x

c
i ,x

d
i )= (0,0,0,0) for all i=2,...,L. We can

put the following upper bound on the likelihood
function for T 0. Letting 	ab =	a	b and using (A.2),
we have

Px∼(T 0,�)

(
xa

1=1,xb
1=xc

1=xd
1=0

)
×Px∼(T 0,�)

(
xa

i =xb
i =xc

i =xd
i =0

)L−1

≤Px∼(T 0,�)

(
xa

1=1�=xb
1

)
×Px∼(T 0,�)

(
xa

i =0=xb
i

)L−1

≤ 1
2

(
1−	ab

2

)[
1
2

(
1+	ab

2

)]L−1
, (A.4)

where the first inequality follows by inclusion.
To derive our upper bound, we maximize the
expression on the last line as a function of 	ab.
Taking the log, differentiating and equating to 0,
we get

−1
1−	ab

+(L−1)
1

1+	ab
=0
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that is, 	ab = L−2
L . Plugging this back above, we get

the upper bound

sup
�

�(T 0,�,x)

≤Llog
(

1
2

)
+log

(
1
L

)
+(L−1)log

(
1− 1

L

)
.

On the other hand, for T ∗ (or, in fact, any topology),
setting �b =�c =�d =�m =0 and �a so that pa = 1

L ,
we get the matching bound

Px∼(T ∗,�)

(
xa

1=1,xb
1=xc

1=xd
1=0

)
×Px∼(T ∗,�)

(
xa

i =xb
i =xc

i =xd
i =0

)L−1

= 1
2

(
1
L

)[
1
2

(
1− 1

L

)]L−1
,

which establishes the required lower bound on
sup��(T ∗,�,x).

3. Two identical singleton sites on a or c: For this locus site
pattern, the argument is identical to the previous
locus site pattern when L≥4, with the difference
that the exponents in (A.4) are 2 and L−2, and
accordingly throughout, giving an optimal 	ab of
L−4

L and the upper bound Llog(1/2)+2log
(

2
L

)
+

(L−2)log
(

1− 2
L

)
. This can likewise be achieved

with topology T ∗ (or, in fact, any topology) if �b =
�c =�d =�m =0 and �a is set so that pa = 2

L . When
L=2 or L=3, the optimal 	ab is 0 and the upper
bound is 2Llog(1/2). This can likewise be achieved
with topology T ∗ (or, in fact, any topology)
if �b =�c =�d =�m =0 and �a is set so that
pa = 1

2 .

4. Two different singleton sites on a and c: Assume that
(xa

1,x
b
1,x

c
1,x

d
1)= (1,0,0,0), (xa

1,x
b
1,x

c
1,x

d
1)= (0,0,1,0),

and (xa
i ,x

b
i ,x

c
i ,x

d
i )= (0,0,0,0) for all i=3,...,L,

without loss of generality. (Recall that the case
of two different singletons not involving a and c
has negligible probability of being observed by
part (a) and is therefore not considered here.)
We will use the following property of the CFN
model: on T 0, because the path joining a,b and
the path joining c,d are disjoint, the event {xc

1 =xd
1}

is independent of the states xa
1 and xb

1. This is
immediate by the symmetry of the CFN model
and the Markov property (Semple and Steel 2003).
(Indeed, conditioning on the state at f has no effect
on the agreement between c and d.) Using this fact

as well as inclusion and (A.2), we get

Px∼(T 0,�)

(
xa

1=1,xb
1=xc

1=xd
1=0

)
×Px∼(T 0,�)

(
xc

1=1,xa
1=xb

1=xd
1=0

)
×Px∼(T 0,�)

(
xa

i =xb
i =xc

i =xd
i =0

)L−2

≤Px∼(T 0,�)

(
xa

1=1�=xb
1,x

c
1=xd

1

)
×Px∼(T 0,�)

(
xa

1=0=xb
1,x

c
1 �=xd

1

)
×Px∼(T 0,�)

(
xa

i =0=xb
i ,x

c
i =xd

i

)L−2

=[Px∼(T 0,�)(x
a
1=1�=xb

1)

×Px∼(T 0,�)(x
c
1=xd

1)]
×[Px∼(T 0,�)(x

a
1=0=xb

1)

×Px∼(T 0,�)(x
c
1 �=xd

1)]
×[Px∼(T 0,�)(x

a
i =0=xb

i )

×Px∼(T 0,�)(x
c
i =xd

i )]L−2

= 1
2

(
1−	ab

2

)(
1+	cd

2

)
×1

2

(
1+	ab

2

)(
1−	cd

2

)

×
[

1
2

(
1+	ab

2

)(
1+	cd

2

)]L−2

=
(

1
2

)L(
1−	ab

2

)(
1+	ab

2

)L−1

×
(

1−	cd
2

)(
1+	cd

2

)L−1
,

where 	ab =	a	b and 	cd =	c	d. Maximizing this
last expression over 	ab and 	cd proceeds as
in (A.4). We then get the upper bound

sup
�

�(T 0,�,x)

≤Llog
(

1
2

)
+2log

(
1
L

)
+2(L−1)log

(
1− 1

L

)
.

On the other hand, for T ∗ (or, in fact, any topology),
setting �b =�d =�m =0 and �a =�c so that pa =pc =
1
L , we get

Px∼(T ∗,�)

(
xa

1=1,xb
1=xc

1=xd
1=0

)
×Px∼(T ∗,�)

(
xc

1=1,xa
1=xb

1=xd
1=0

)
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×Px∼(T ∗,�)

(
xa

i =xb
i =xc

i =xd
i =0

)L−2

= 1
2

(
1
L

)(
1− 1

L

)
× 1

2

(
1
L

)(
1− 1

L

)

×
[

1
2

(
1− 1

L

)2
]L−2

,

which establishes the required lower bound on
sup��(T ∗,�,x).

5. One site with a 2/2-split ac|bd: Without loss of
generality, we assume that (xa

1,x
b
1,x

c
1,x

d
1)= (1,0,1,0)

and (xa
i ,x

b
i ,x

c
i ,x

d
i )= (0,0,0,0) for all i=2,...,L.

Arguing as in the previous case,

Px∼(T 0,�)

(
xa

1=xc
1=1,xb

1=xd
1=0

)
×Px∼(T 0,�)

(
xa

i =xb
i =xc

i =xd
i =0

)L−1

≤Px∼(T 0,�)

(
xa

1=1�=xb
1,x

c
1 �=xd

1

)
×Px∼(T 0,�)

(
xa

i =0=xb
i ,x

c
i =xd

i

)L−1

=[Px∼(T 0,�)(x
a
1=1�=xb

1)Px∼(T 0,�)(x
c
1 �=xd

1)]
×[Px∼(T 0,�)(x

a
i =0=xb

i )

×Px∼(T 0,�)(x
c
i =xd

i )]L−1

= 1
2

(
1−	ab

2

)(
1−	cd

2

)

×
[

1
2

(
1+	ab

2

)(
1+	cd

2

)]L−1

=
(

1
2

)L(
1−	ab

2

)(
1+	ab

2

)L−1

(
1−	cd

2

)(
1+	cd

2

)L−1
,

where, again, 	ab =	a	b and 	cd =	c	d. This
bound matches the bound we obtained in the
previous case. Hence, we once again get the upper
bound

sup
�

�(T 0,�,x)

≤Llog
(

1
2

)
+2log

(
1
L

)
+2(L−1)log

(
1− 1

L

)
.

However, in this case, we claim that the maximum
likelihood under T ∗ is strictly greater. Indeed,
letting �a =�b =�c =�d =0 and setting �m such

that pm = 1
L , we get

Px∼(T ∗,�)

(
xa

1=xc
1=1,xb

1=xd
1=0

)
×Px∼(T ∗,�)

(
xa

i =xb
i =xc

i =xd
i =0

)L−1

= 1
2

(
1
L

)
×

[
1
2

(
1− 1

L

)]L−1
,

so

sup
�

�(T ∗,�,x)

≥Llog
(

1
2

)
+log

(
1
L

)
+(L−1)log

(
1− 1

L

)
.

Therefore

sup
�

�(T ∗,�,x)−sup
�

�(T 0,�,x)

≥−log
(

1
L

)
−(L−1)log

(
1− 1

L

)
=:K12 >0,

where the last equality is a definition. Positivity
of K12 can be seen, for instance, by noticing that
dividing it by L gives the entropy of a 2-state
random variable.

In all the above cases, a similar argument still applies
if one replaces T 0 with T 1 (by exchanging the roles of b
and d throughout). That concludes the proof of the claim
in (b). �

Proof of Lemma 2. (a) The expressions for Qs
ac|bd,

Qs
ab|cd and Qs

ad|bc come from taking L=1 in Lemma 1
(a) and raising to the power L. Specifically, it was
shown in (A.1) that observing a single site splitting a,c
from b,d has probability of the form (1/2)
2 +O(
3).
Since a saturated locus contains L sites with the same
probability, we raise this expression to the power L to
obtain

Qs
ac|bd =

(
1
2

)L

2L +O(
2L+1).

Similarly, it was observed in the proof of Lemma 1 (a)
that observing a single site splitting a,b from c,d (or a,d
from b,c) has probability O(
3). Raising to the power L
gives Qs

ab|cd,Q
s
ad|bc =O(
3L).

For the first part of the claim, we consider several cases.

– Suppose that sequence data set x contains at least
one uninformative character (i.e., a constant site
or a singleton). Then, in computing bootstrap
supports, there is probability at least (1/L)L

of resampling a data set containing only that
particular uninformative site. We have shown in
the proof of Lemma 1 (b) (see cases 1 and 2 with
L=1) that all topologies have an equal ML score
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on such a site and therefore on such a resampled
data set (since the probability of observing a data
set of this type is the probability of observing a
single site to the power L). Hence each topology
is supported with probability 1/3. Hence the
bootstrap support for the ML-optimizer for x is at
most 1−(2/3)(1/L)L ≤B and x is rejected by WSB*.

– Suppose that sequence data set x contains two
different informative characters (i.e., two different
splits). One of those splits is incompatible with the
ML-optimizer (possibly random) for x. Then, in
computing bootstrap supports, there is probability
at least (1/L)L of resampling a data set containing
only that incompatible split. From the argument
in Lemma 1 (b) again (case 5 with L=1), the
incompatible split is then the ML-optimizer of such
a resampled data set. Hence the bootstrap support
for the ML-optimizer for x is at most 1−(1/L)L <

1−(2/3)(1/L)L ≤B and x is rejected by WSB*.

– Suppose finally that sequence data set x contains
only characters equivalent to a given split. Then all
resampled data sets are saturated for that split as
well. From the argument in Lemma 1 (b) again (case
5 with L=1), that split is the unique ML-optimizer
for x. Hence the bootstrap support for the ML-
optimizer for x is 1>B and x is passed along by
WSB* to the summary method.

(b) This was proved in (a).
�

Partitioned ML on CFN Model
Proof of Claim 1. Using Lemma 1, we are now ready

to prove Claim 1.
We first show that, for a fixed topology, as the number

of loci grows to infinity the maximum likelihood value
converges almost surely to the expected value of the
maximum likelihood value on a single locus.

Lemma 4 (Convergence of the partitioned
log-likelihood). Let T ′ be a fixed topology on the four
taxa with branch lengths �′. Let also T ′′ be a fixed topology
on the four taxa (possibly, but not necessarily, equal to T ′).
If the length-L locus sequence data sets �·j, j=1,2,..., are
generated under the CFN model on (T ′,�′), then it holds that

1
m

m∑
j=1

sup
�j

�(T ′′,�j,�·j)

→E�·1∼(T ′,�′)

[
sup
�

�(T ′′,�,�·1)

]
∈[−4Llog2,−Llog2],

(A.5)

almost surely as m→+∞. Above, the subscript �·1 ∼ (T ′,�′)
indicates that the expectation is taken over a single locus under
the CFN model on (T ′,�′).

Proof . For a given topology and data set there is a
unique maximum likelihood value, though the branch
lengths at which it is attained may not themselves
be unique. For any given locus j, there are a finite
number of four-sequence data sets �j̇ of length L that
can occur under the CFN model. As the number of
loci approaches infinity, the frequency of each data set
approaches its expected value by the Strong Law of Large
Numbers (SLLN) (see e.g., Durrett 1996). To check that
the conditions of the SLLN are satisfied, note that the
log-likelihood is non-positive. In fact, by taking branch
lengths to +∞ under the CFN model, we have for any
topology T on {a,b,c,d} and any locus data set �·1

sup
�

�(T ,�,�·1)≥ log
(

1
2

)4L
=−4Llog2. (A.6)

On the other hand, because by inclusion the probability
of observing �·1 is at most the probability of observing

�a1, which is simply
(

1
2

)L
by independence of the sites,

we also have

sup
�

�(T ,�,�·1)≤ log
(

1
2

)L
=−Llog2. (A.7)

So the expectation on the RHS of (A.5) lies in the interval
[−4Llog2,−Llog2]. �

Hence, in view of Lemma 4, our goal is to show that
there is 
>0 small enough such that the expected log-
likelihood under (T 0,�0) is higher for T ∗ than it is for
T 0 or T 1. That is, it suffices to establish the following
claim.

Lemma 5 (Expected locus-wise maximum likelihood on
a fixed topology: key inequality). There exists 
>0 such
that

E�·1∼(T 0,�0)

[
sup
�

�(T 0,�,�·1)

]

<E�·1∼(T 0,�0)

[
sup
�

�(T ∗,�,�·1)

]
, (A.8)

and

E�·1∼(T 0,�0)

[
sup
�

�(T 1,�,�·1)

]

<E�·1∼(T 0,�0)

[
sup
�

�(T ∗,�,�·1)

]
. (A.9)

Proof . Let X be the set of all possible single-locus
data sets. To prove Lemma 5, we expand the expectations
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in (A.8) over X . In other words, we seek to show that∑
x∈X

P�·1∼(T 0,�0)[�·1 =x]

×
{

sup
�

�(T ∗,�,x)−sup
�

�(T 0,�,x)

}
>0. (A.10)

We then use Lemma 1 as follows. By (a),∑
x∈X̃

P�·1∼(T 0,�0)[�·1 =x]

×
∣∣∣∣∣sup

�

�(T ∗,�,x)−sup
�

�(T 0,�,x)

∣∣∣∣∣=O(
3). (A.11)

Indeed, any locus site pattern in X̃ has probability O(
3).
Moreover, recall from (A.6) and (A.7) that the expression
in absolute value is bounded by 3Llog2. In addition, by
(a) and (b), we then arrive at∑

x∈X

P�·1∼(T 0,�0)[�·1 =x]

×
{

sup
�

�(T ∗,�,x)−sup
�

�(T 0,�,x)

}

≥K12

{(
1
2

)L

2 +O(
3)

}
+O(
3)>0,

for 
>0 small enough.
The same argument applies for (A.9). �

Combining Lemmas 4 and 5 gives Claim 1. �

Reasonable Summary Methods on CFN Model
Proof of Claim 2. Using Lemma 1, we are now ready

to prove Claim 2.
By definition of a reasonable summary method, on

a four-taxon data set, A outputs the most common
quartet topology (breaking ties uniformly at random).
We also assume that for genes with multiple optimal
ML topologies, a highest scoring topology is picked
uniformly at random. We denote by R̂(�·j) the ML gene
tree on the j-th locus sequence data set. The law of large
numbers immediately gives the following.

Lemma 6 (Convergence of frequencies). Let T ′ be a fixed
topology on the four taxa with branch lengths �′. Let also T ′′ be
a fixed topology on the four taxa (possibly, but not necessarily,
equal to T ′). If the length-L locus sequence data sets �·j, j=
1,2,..., are generated under the CFN model on (T ′,�′), then
it holds that

1
m

m∑
j=1

1
[
R̂(�·j)=T ′′]−→P�·1∼(T ′,�′)

[
R̂(�·1)=T ′′],

almost surely as m→+∞. Above, 1[E] is 1 if event E occurs,
and 0 otherwise.

Hence, in view of Lemma 6, our goal is to show that
there is 
>0 small enough such that, under (T 0,�0), T ∗
is more likely to be the ML gene tree topology than T 0

or T 1. That is, it suffices to establish the following claim.

Lemma 7 (Locus-wise maximum likelihood on a fixed
topology: key inequality). There exists 
>0 such that

P�·1∼(T 0,�0)

[
R̂(�·1)=T 0

]
<P�·1∼(T 0,�0)

[
R̂(�·1)=T ∗], (A.12)

and

P�·1∼(T 0,�0)

[
R̂(�·1)=T 1

]
<P�·1∼(T 0,�0)

[
R̂(�·1)=T ∗]. (A.13)

Proof . By Lemma 1 (b), for all x∈X0 ∪X11 ∪X2=∪
X2�=, all three topologies are ML-optimal, while for all
x∈X12, T ∗ alone is ML-optimal. Moreover, by Lemma 1
(a), all other patterns are negligible. Hence, we get

P�·1∼(T 0,�0)

[
R̂(�·1)=T ∗]

≥ 1
3

2L
[

Q0 +2LQ11 +2
(

L
2

)
Q2=+L(L−1)Q2�=

]
+2LQ12 +O(
3),

while

P�·1∼(T 0,�0)

[
R̂(�·1)=T 0

]
≤ 1

3
2L

[
Q0 +2LQ11 +2

(
L
2

)
Q2=+L(L−1)Q2�=

]
+O(
3),

and similarly for T 1. The result then follows from the
fact that

Q12 =
(

1
2

)L

2 +O(
3).

�

Combining Lemmas 6 and 7 gives Claim 2. �

WSB* Pipeline on CFN Model
Proof of Claim 3. Using Lemma 2, we are now ready

to prove Claim 3.
We begin with two basic results.

Lemma 8. In a WSB* pipeline with bootstrap support

threshold B≥1− 2
3

(
1
L

)L
, there will be at most three bins (one

for each of the three possible binary topologies on four leaves),
and the bin associated with topology ab|cd will have all the
saturated genes that support ab|cd (and similarly for ac|bd
and ad|bc).

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/2/281/5104882 by U

niversity of W
isconsin-M

adison Libraries user on 16 August 2019



Copyedited by: MANUSCRIPT CATEGORY: Regular Manuscript

[18:56 23/1/2019 Sysbio-OP-SYSB180061.tex] Page: 295 281–297

2019 ROCH ET AL.—LONG-BRANCH ATTRACTION IN SPECIES TREE ESTIMATION 295

Proof . By Lemma 2 (b), the genes saturated for a
given split have bootstrap support of 100%. Hence, no
two such genes can be placed in the same bin if they
support different tree topologies. Therefore, for any
bin, the genes placed in the bin will support the same
topology. By Lemma 2 (a), all other genes are discarded.

Since there are only three tree topologies, the
incompatibility graph is the union of a collection of
3-partite graphs (each 3-partite graph defined by a split-
saturated gene). Hence, the incompatibility graph can be
3-colored. Since statistical binning seeks the minimum
vertex coloring for the incompatibility graph, it will
partition the genes into three bins, with one bin for each
binary tree topology. Hence, the split-saturated genes
are partitioned into three sets based on the tree topology
they support. �

Lemma 9. (Lemma 2 from Bayzid et al. (2015):) Let S be
a set of taxa, and let Si be a set of DNA sequences for S,
with i=1,2,...p. Suppose that tree topology t is an optimal
solution for GTR maximum likelihood for each Si (allowing
various GTR parameters for different i=1,2,...p). Then t will
be an optimal solution to a fully partitioned GTR maximum
likelihood analysis on a concatenation of S1,S2,...,Sp.

Corollary 1. The set of newly computed gene trees computed
during a WSB* pipeline has the same distribution as the
original set of ML gene trees obtained from the split-saturated
genes.

Proof . By Lemma 8, the split-saturated genes are
partitioned into three bins for the different tree
topologies. By Lemma 9, fully partitioned maximum
likelihood on each supergene alignment produces the
tree topology associated with the bin. In a WSB* pipeline,
the supergene tree for each bin is copied by as many
genes as in the bin. Hence, the distribution defined by the
newly computed gene trees is identical to the distribution
defined by original ML gene trees. �

The rest of the argument follows as in the proof of
Claim 2. By Lemma 2 (a), under our four-taxon model
species tree with topology ab|cd, the most probable
estimated quartet tree on split-saturated genes is ac|bd.
After removing all the loci that are not split-saturated,
we are left only with genes that split 2/2. As the number
of loci increases, with probability going to 1 the most
frequent estimated quartet tree will be ac|bd. Therefore by
Corollary 1, in a WSB* pipeline with bootstrap support

threshold B≥1− 2
3

(
1
L

)L
, the most frequent supergene

tree computed by weighted statistical binning is identical
to the most frequent estimated quartet tree in the
input, and will converge to ac|bd as the number of loci
increases by the law of large numbers. Hence, WSB*
pipelines followed by reasonable summary methods will
be positively misleading under this model. �

Extension to MSC+CFN Model
In this section, we extend the main claims to the

MSC+CFN model. The key idea is to choose a species
tree that is highly likely to produce, on any given locus,
sequence data whose distribution is close to that of a
fixed gene tree in the Felsenstein zone.

When a character of length L, �·j, is generated under
the CFN model on (T ,�), we write �·j ∼DL

g [T ,�].
Formally, DL

g [T ,�] is a probability distribution over
sequence data sets in{0,1}n×L, that is, containing n
sequences of length L taking values in {0,1}, where n
is the number of leaves in T . The subscript g is meant to
refer to the fact that this is a distribution obtained from
a single gene tree.

We also consider sequence data sets generated by the
MSC+CFN model. Consider a species tree (S,�,�) with
n leaves. Each gene j=1,...,m has a genealogical history
represented by its gene tree Tj distributed according to
the following process: looking backwards in time, on
each branch e of the species tree, the coalescence of
any two lineages is exponentially distributed with rate
2/�e, independently from all other pairs; whenever two
branches merge in the species tree, we also merge the
lineages of the corresponding populations, that is, the
coalescence proceeds on the union of the lineages. More
specifically, the probability density of a realization of this
model for m independent genes is

m∏
j=1

∏
e∈E

exp
(

−
(Oe

j

2

)[
�

e,Oe
j +1

j −�
e,Oe

j

j

]
2
�e

)

×
Ie
j −Oe

j∏
�=1

exp
(

−
(

�

2

)[
�

e,�
j −�

e,�−1
j

] 2
�e

)
,

where, for gene j and branch e, Ie
j is the number of

lineages entering e, Oe
j is the number of lineages exiting e,

and �
e,�
j is the �th coalescence time in e; for convenience,

we let �
e,0
j and �

e,Ie
j −Oe

j +1
j be respectively the divergence

times of e and of its parent population (which depend
on �).

When a character of length L, �·j, is generated
under the MSC+CFN model on (S,�,�), we write
�·j ∼DL

s [S,�,�]. Formally, DL
s [S,�,�] is a probability

distribution over sequence data sets in {0,1}n×L, where n
is the number of leaves in S. The subscript s is meant to
refer to the fact that this is a distribution obtained from
the MSC on a species tree.

As in the main text, fix T 0 to be the four-taxon topology
ab|cd on {a,b,c,d} and let �0 denote a vector of branch
lengths on T 0. Denote the endpoint of the middle edge
on the ab side as e, and on the cd side as f . For this tree,
denote the length of branch ae as �0

a , be as �0
b , cf as �0

c ,
df as �0

d and ef as �0
m. For a branch length �, recall that
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we also use the parameterization 	=− 1
2 log� in terms of

which the probability of a change along this branch is

p= 1
2

(
1−e−2�

)
= 1

2
(1−	),

and the probability of no change is q= 1
2 (1+	). We

choose �0 to construct a Felsenstein zone tree where, for
a parameter 
>0, p0

a =p0
c =
 and p0

b =p0
d =p0

m =
3. Note
that for any 
>0, we can set �0

a =�0
c =− 1

2 log(1−2
) and
�0

b =�0
d =�0

m =− 1
2 log(1−2
3) to satisfy this relationship.

We also denote the alternate topologies by T ∗ =ac|bd and
T 1 =ad|bc.

The next claim shows that we can choose a species tree
that is highly likely to produce locus-wise sequence data
whose distribution is close to that of the desired gene
tree (T 0,�0). Note, in particular, that for generic choices
of � and � the output gene trees are not ultrametric (see
Semple and Steel (2003) for a definition)—and therefore
can lie in the Felsenstein zone. Below, one should see the
distribution R as a small approximation error from the
desired gene tree distribution.

Claim 5 (Species tree in the Felsenstein zone). For all

>0, there is a species tree (S0,�0,�0) with leaves {a,b,c,d}
and a probability distribution R over {0,1}4×L such that

DL
s [S0,�0,�0]= (1−
)DL

g [T 0,�0]+
R.

Proof . The idea of the proof is simple: we choose a
species tree (S0,�0,�0) that is close to the desired gene
tree (T 0,�0). But we make one more crucial observation:
each edge e of the species tree has in fact two parameters,
�0

e and �0
e , that jointly control the speed of coalescence

on e as well as the amount of substitution on the
corresponding edge(s) of the produced gene tree (in a
tangled manner; see the definition of the MSC in Section
“Evolution Under the MSC”). As a result, we can choose
(S0,�0,�0) to be close to (T 0,�0) while ensuring that
the amount of incomplete lineage sorting is arbitrarily
negligible.

Formally, we let S0 be the balanced species tree with
split ab|cd and root r. Denote the endpoint of the edge
incident to the root on the ab side as e, and on the cd side
as f . For this tree, denote the parameters of branch ae as
�0

a and �0
a , be as �0

b and �0
b , cf as �0

c and �0
c , df as �0

d and
�0

d, er as �0
e and �0

e , and fr as �0
f and �0

f . The branch r∞
above the root r has infinite length and parameter �0

r . We
take �0

a =�0
b =�0

c =�0
d =1, �0

a =�0
a , �0

b =�0
b , �0

c =�0
c , �0

d =�0
d.

Finally, we let �0
e =�0

f =�+�0
m/2 and �0

e =�0
f =�0

r =�.
Now take � and � small enough that:

• coalescences in er, fr and r∞ occur within � of e, f ,
and r, respectively;

• no mutation occurs within � above e, f and r,
respectively;

with probability at least 1−
. Specifically, for a fixed�, we
choose � :=�(�) small enough to ensure that coalescence
occurs within � of the divergences e, f and r with
probability 1−
/2. Then we take � small enough to
ensure that no mutations occur within � of the same
divergences with probability 1−
/2. Conditioned on the
event above, the distribution of sequence data sets is
precisely DL

g [T 0,�0]. The result follows. �

We are now ready to prove the main theorems.

Proof of Theorem 1. We take (S0,�0,�0) as in Claim 5
for 
>0 to be determined below. We think of the first
m loci as divided into two subsets: Mm

0 coming from
distribution DL

g [T 0,�0] and Mm
R coming from R. By the

law of large numbers, we have

|Mm
0 |

m
→1−
 and

|Mm
R|

m
→
.

We then apply the argument in the proof of Claim 1 to
the samples in Mm

0 and take 
 small enough that the
contribution ofMm

R to the partitioned log-likelihood is in
the limit m→+∞ smaller than the expected gap between
T ∗ and T 0. �

The proofs of Theorems 2 and 4 follow from similar
arguments.
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Meredith R.W., Janečka J.E., Gatesy J., Ryder O.A., Fisher C.A.,
Teeling E.C., Goodbla A., Eizirik E., Simão T.L.L., Stadler T.,
Rabosky D.L., Honeycutt R.L., Flynn J.J., Ingram C.M., Steiner
C., Williams T.L., Robinson T.J., Burk-Herrick A., Westerman M.,
Ayoub N.A., Springer M.S., Murphy W.J. 2011. Impacts of the
cretaceous terrestrial revolution and KPg extinction on mammal
diversification. Science 334:521–4.

Mirarab S., Bayzid M.S., Boussau B., Warnow T. 2014a. Statistical
binning improves species tree estimation in the presence of gene
tree incongruence. Science 6215:1250463.

Mirarab S., Reaz R., Bayzid M.S., Zimmermann T., Swenson M.,
Warnow T. 2014b. ASTRAL: Accurate Species TRee ALgorithm.
Bioinformatics 30:i541–i548.

Mirarab S., Warnow T. 2015. ASTRAL-II: coalescent-based species tree
estimation with many hundreds of taxa and thousands of genes.
Bioinformatics 31:i44–i52.

Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C.,
Frandsen P.B., Ware J., Flouri T., Beutel R.G., Niehuis O., Petersen
M., Izquierdo-Carrasco F., Wappler T., Rust J., Aberer A.J., Aspöck
U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A., Buckley
T.R., Calcott B., Chen J., Friedrich F., Fukui M., Fujita M., Greve C.,
Grobe P., Gu S., Huang Y., Jermiin L.S., Kawahara A.Y., Krogmann L.,
Kubiak M., Lanfear R., Letsch H., Li Y., Li Z., Li J., Lu H., Machida
R., Mashimo Y., Kapli P., McKenna D.D., Meng G., Nakagaki Y.,
Navarrete-Heredia J.L., Ott M., Ou Y., Pass G., Podsiadlowski L.,
Pohl H., von Reumont B.M., Schütte K., Sekiya K., Shimizu S.,
Slipinski A., Stamatakis A., Song W., Su X., Szucsich N.U., Tan M.,
Tan X., Tang M., Tang J., Timelthaler G., Tomizuka S., Trautwein
M., Tong X., Uchifune T., Walzl M.G., Wiegmann B.M., Wilbrandt
J., Wipfler B., Wong T.K.F., Wu Q., Wu G., Xie Y., Yang S., Yang Q.,
Yeates D.K., Yoshizawa K., Zhang Q., Zhang R., Zhang W., Zhang
Y., Zhao J., Zhou C., Zhou L., Ziesmann T., Zou S., Li Y., Xu X.,
Zhang Y., Yang H., Wang J., Wang J., Kjer K.M., Zhou X. 2014.
Phylogenomics resolves the timing and pattern of insect evolution.
Science 346:763–767.

Molloy, E.K., Warnow T. 2017. To include or not to include: the impact of
gene filtering on species tree estimation methods. Syst. Biol. 67:285–
303.

Mossel, E., Roch S. 2010. Incomplete lineage sorting: consistent
phylogeny estimation from multiple loci. IEEE/ACM Trans.
Comput. Biol. Bioinform. 7:166–71.

Neyman J. 1971. Molecular studies of evolution: a source of novel
statistical problems. In: Gupta S., Yackel J., editors. Statistical
decision theory and related topics. New York and London:
Academic Press, p. 1–27.

Patel, S., Kimball R.T., Braun E.L. 2013. Error in phylogenetic estimation
for bushes in the tree of life. J. Phylog. Evol. Biol. 1:110.

Posada D. 2016. Phylogenomics for systematic biology. Syst. Biol.
65:353–356.

Roch S., Steel M. 2015. Likelihood-based tree reconstruction on a
concatenation of aligned sequence data sets can be statistically
inconsistent. Theor. Popul. Biol. 100:56–62.

Roch S., Warnow T. 2015. On the robustness to gene tree estimation error
(or lack thereof) of coalescent-based species tree methods. Syst. Biol.
64:663–676.

Semple C., Steel M.A. 2003. Phylogenetics. Vol. 24. Oxford Lecture
Series in Mathematics and Its Applications. Oxford, UK: Oxford
University Press.

Tavaré S. 1986. Some probabilistic and statistical problems in the
analysis of DNA sequences. In: Lectures on mathematics in the
life sciences. Vol. 17. Rhode Island: American Mathematical Society,
p. 57–86.

Tuffley C., Steel M. 1997. Links between maximum likelihood and
maximum parsimony under a simple model of site substitution.
Bull. Math. Biol. 59:581–607.

Vachaspati P., Warnow T. 2015. ASTRID: Accurate species TRees from
internode distances. BMC Genomics 16:S3.

Warnow T. 2015. Concatenation analyses in the presence
of incomplete lineage sorting. PLoS Curr. doi:
10.1371/currents.tol.8d41ac0f13d1abedf4c4a59f5d17b1f7.

Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci
N., Ayyampalayam S., Barker M.S., Burleigh J.G., Gitzendanner
M.A., B. Ruhfel R., Wafula E., Der J.P., Graham S.W., Mathews
S., Melkonian M., Soltis D.E., Soltis P.S., Miles N.W., Rothfels C.J.,
Pokorny L., Shaw A.J., DeGironimo L., Stevenson D.W., Surek B.,
Villarreal J.C., Roure B., Philippe H., Chen T., Deyholos M.K.,
Baucom R.S., Kutchan T.M., Augustin M.M., Wang J., Zhang Y.,
Tian Z., Yan Wu X., Sun X., Wong G.K.-S., Leebens-Mack J. 2014.
Phylotranscriptomic analysis of the origin and early diversification
of land plants. Proc. Natl. Acad. Sci. U.S.A. 111:E4859–E4868.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/2/281/5104882 by U

niversity of W
isconsin-M

adison Libraries user on 16 August 2019


	Long-Branch Attraction in Species Tree Estimation: Inconsistency of Partitioned Likelihood and Topology-Based Summary Methods

